## PHYSICAL / INORGANIC CHEMISTRY



### DPP No. 38

**Total Marks: 33** 

Max. Time: 35 min.

Topic: p-block elements (Nitrogen and Oxygen family)

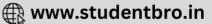
# Type of Questions Single choice Objective ('-1' negative marking) Q.1 to Q.4 Multiple choice objective ('-1' negative marking) Q.5 Assertion and Reason (no negative marking) Q.6 to Q. 8 Subjective Questions ('-1' negative marking) Q.9 to Q.10 M.M., Min. [12, 12] (4 marks, 4 min.) [9, 9] (4 marks, 5 min.) [8, 10]

- 1.  $NH_4CIO_4 + HNO_3(dilute) \longrightarrow HCIO_4 + [X]$ 
  - $[X] \xrightarrow{\Delta} Y(g)$
  - [X] and [Y] are respectively.
  - (A) NH<sub>4</sub>NO<sub>3</sub> and N<sub>2</sub>O (B
    - (B)  $NH_{a}NO_{a}$  and  $N_{a}$
- (C) HNO<sub>4</sub> and O<sub>2</sub>
- (D) None

- 2. Match the following
  - (A) H<sub>2</sub>O > H<sub>2</sub>Te > H<sub>2</sub>Se > H<sub>2</sub>S
  - (B)  $NH_3 > PH_3 > AsH_3 > SbH_3$
  - (C)  $H_2O < H_2S < H_2Se < H_2Te$
  - (D) KCI < CaCl<sub>2</sub> < AICl<sub>3</sub> < SnCl<sub>4</sub>
  - (A) (A) -r; (B) -p; (C) -q; (D) -t
  - (C) (A) -s; (B) -p; (C) -p; (D) -t

- (p) Basic character
- (q) Acidic character
- (r) Boiling point
- (s) Ionic character
- (t) Covalent character
- (B) (A) -p; (B) -r; (C) -q; (D) -t
- (D) (A) r; (B) p; (C) q; (D) s
- 3. In the following reaction,  $2MnO_4^- + 5H_2O_2^{-18} + 6H^+ \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$

The radioactive oxygen will appear in:


(A) H<sub>2</sub>O

(B) O.

(C) bothH<sub>2</sub>O & O<sub>2</sub>

- (D) above reaction does not take place
- 4. (a) Which is correct regarding the cyclic trimer of SO<sub>3</sub>
  - (A) It contains three S S,  $\sigma$  bonds
  - (B) It contains three O O,  $\sigma$  bonds
  - (C) It contains six O O,  $\pi$  bonds
  - (D) The total number of  $\sigma$  and  $\pi$  bonds in it are 12 and 6 respectively
  - **(b)** In SO<sub>2</sub> molecule, there are two  $\sigma$ -bonds and two  $\pi$ -bonds. The two  $\pi$ -bonds are formed by :
  - (A)  $p\pi \bar{p}\pi$  overlap between S and O atoms
  - (B)  $sp^2 p$  overlap between S and O atoms
  - (C) one by  $p\pi p\pi$  overlap and other by  $p\pi d\pi$  overlap
  - (D) both by  $p\pi d\pi$  overlap
- **5.** Identify the correct statement(s)
  - (A) P<sub>4</sub>O<sub>10</sub> is used as a drying agent
  - (B)  $P_4O_{10}$  contains  $p\pi-p\pi$  back bonding
  - (C) In  $P_4O_{10}$  each P atom is bonded to three oxygen atoms
  - (D) P<sub>4</sub>O<sub>10</sub> hydrolyse in water forming phosphorus acid
- **6. S**<sub>1</sub>: H<sub>2</sub>O<sub>2</sub> solutions are stored in dark coloured plastic or wax coated glass vessels often with negative catalysts such as urea or sodium stannate added as stabilizers.
  - $S_2$ : With stronger oxidising agents  $H_2O_2$  is oxidised and in such cases  $O_2$  is always evolved.
  - $\mathbf{S_3}$ :  $\mathbf{H_2O_2}$  is more hydrogen bonded than is water and so has a higher boiling point than water.
  - $S_a$ : In dilute aqueous solution  $H_2O_2$  is more acidic than water.
  - (A) TTFT
- (B) TTTT
- (C) TTTF
- (D) TFTT





7. Statement-1: Molecular oxygen is attracted by magnetic field.

**Statement-2 :** Molecular oxygen contains 2 unpaired electrons which occupy two different  $\pi$  – molecular orbitals

- (A) Statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1
- (B) Statement 1 and statement 2 are correct but statement 2 is not correct explanation of statement 1
- (C) Statement 1 is correct but statement 2 is false
- (D) Statement 1 is false but statement 2 is correct
- **8. Statement-1**: Mercury in contact with ozone loses its mobility and starts sticking to the glass surface.

Statement-2: This is known as tailing of mercury.

- (A) Statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1
- (B) Statement 1 and statement 2 are correct but statement 2 is not correct explanation of statement 1
- (C) Statement 1 is correct but statement 2 is false
- (D) Statement 1 is false but statement 2 is correct
- 9. What happens when?
  - (a) Hypophosphorus acid is heated.
  - (b) Phosphorus penta oxide reacts with PCI<sub>5</sub>.

#### 10. Integer Answer Type

This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.

- (i) If Phosphorous acid, Tetrathionic acid and Pyrophosphoric acid have number of acidic hydrogen per molecule respectively as x, y and z, then find the value of x + y z.
- (ii) How many orders among following are correct with respect to the properties indicated:

(1)  $NH_3 < H_2O < H_2S$  Boiling point (2)  $PH_3 < AsH_3 < NiH_3 < SbH_3$  Boiling point (3)  $BF_3 < BCI_3 < BBr_3$  Extent of hydrolysis (4)  $CH_3CI > CH_3F > CH_3Br > CH_3I$  Dipole moment (5)  $BF_3 < BCI_3 < BBr_3$  Lewis acidic strength (6)  $Na^+ > Mg^{+2} > AI^{+3}$  Extent of hydration

(iii) Depending upon the nature of oxides, they are classified as acidic, basic, amphoteric and neutral oxides.

Among the following, the total number of acidic oxides are:

NO<sub>2</sub>, CuO, NO, CO<sub>2</sub>, P<sub>4</sub>O<sub>6</sub>, CO, PbO<sub>2</sub>, SiO<sub>2</sub>, SnO<sub>2</sub>.

## **Answer Key**

#### **DPP No. #38**

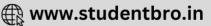
(B)

(A)

- **1.** (A)
- 2.
- (A)
- 3.

- 4.
- (a) (D) (b) (C)

(B)

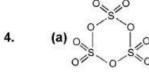

- 5.
- (A,B)
- 6.
- (B)
- 7.

0

9.

10.

- (i) 0
- (ii) 4
- (iii) 4
- (a)  $2H_3PO_2 \longrightarrow H_3PO_4 + PH_3$  (b)  $P_4O_{10} + 6 PCI_5 \longrightarrow 10POCI_3$




## **Hints & Solutions**

#### PHYSICAL / INORGANIC CHEMISTRY

**DPP No. #38** 

- 1.  $NH_4CIO_4 + HNO_3 \longrightarrow HCIO_4 + NH_4NO_3$  $2NH_4NO_3 \stackrel{\triangle}{\longrightarrow} 2N_2O + 4H_2O$
- During oxidation of H<sub>2</sub>O<sub>2</sub>, O-O bond is not broken.



Hence, Ans.(D)

- 6. S<sub>1</sub>: It is correct statement. Dark coloured bottle prevents the auto oxidation of H<sub>2</sub>O<sub>2</sub> by light. Urea and sodium stannate act as negative catalyst for the decomposition of H<sub>2</sub>O<sub>2</sub>.
  - $\mathbf{S_2}: 2\mathsf{KMnO_4} + 5\mathsf{H_2O_2} + 3\mathsf{H_2SO_4} \longrightarrow 2\mathsf{MnSO_4} + \mathsf{K_2SO_4} + 5\mathsf{O_2} + 8\mathsf{H_2O}.$
  - S<sub>3</sub>: H<sub>2</sub>O<sub>2</sub>, boiling point 152°C.
  - $S_4: H_2O_2 \longrightarrow H^+ + HO_2^-,$

$$K_{2000} = 1.5 \times 10^{-12}$$
.

- 7. **O**<sub>2</sub>: KK, σ2s<sup>2</sup>, σ2s<sup>2</sup>, σ2px<sup>2</sup>, π2py<sup>2</sup>, π2pz<sup>2</sup>, π2py<sup>1</sup>, π2pz<sup>1</sup>
- 8.  $2Hg + O_3 \longrightarrow Hg_2O + O_2$  $Hg_2O$  dissolves in Hg and thus its mobility decreases.
- 10. (i) Phosphorous acid (H<sub>2</sub>PO<sub>3</sub>) Dibasic ∴ x = 2 Tetrathionic acid (H<sub>2</sub>S<sub>4</sub>O<sub>6</sub>) Dibasic ∴ y = 2 Pyrophosphoric acid (H<sub>4</sub>P<sub>2</sub>O<sub>7</sub>) tetrabasic ∴ z = 4 (iii) P<sub>4</sub>O<sub>6</sub>, SiO<sub>2</sub>, CO<sub>2</sub>, NO<sub>2</sub> are acidic oxides, CO and NO are neutral oxides and PbO<sub>2</sub> and SnO<sub>2</sub> are amphoteric oxides.

